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Abstract: Open-Vocabulary Mobile Manipulation (OVMM) is a crucial capabil-
ity for autonomous robots, especially when faced with the challenges posed by un-
known and dynamic environments. This task requires robots to explore and build
a semantic understanding of their surroundings, generate feasible plans to achieve
manipulation goals, adapt to environmental changes, and comprehend natural lan-
guage instructions from humans. To address these challenges, we propose a novel
framework that leverages the zero-shot detection and grounded recognition capa-
bilities of pretraining visual-language models (VLMs) combined with dense 3D
entity reconstruction to build 3D semantic maps. Additionally, we utilize large
language models (LLMs) for spatial region abstraction and online planning, incor-
porating human instructions and spatial semantic context. We have built a 10-DoF
mobile manipulation robotic platform JSR-1 and demonstrated in real-world robot
experiments that our proposed framework can effectively capture spatial semantics
and process natural language user instructions for zero-shot OVMM tasks under
dynamic environment settings, with an overall navigation and task success rate
of 80.95% and 73.33% over 105 episodes, and better SFT and SPL by 157.18%
and 19.53% respectively compared to the baseline. Furthermore, the framework is
capable of replanning towards the next most probable candidate location based on
the spatial semantic context derived from the 3D semantic map when initial plans
fail, keeping an average success rate of 76.67%.

Keywords: Open-vocabulary, Mobile Manipulation, Dynamic Environments, 3D
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1 Introduction

Mobile manipulation is a vital and fundamental capability of autonomous robots. The recent surge
of pretraining LLMs and VLMs, along with their integration with robotics, has drawn significant
attention in research, particularly in the areas of open-vocabulary and zero-shot capabilities for
autonomous robots in navigation and mobile manipulation tasks [1, 2, 3, 4, 5, 6]. Although recent
studies have explored robot manipulation in both semantic navigation [2, 6, 7] and open-vocabulary
[8, 1,9, 10] settings, they often assume either a static environment [11, 6] or a non-mobile robot fixed
on a tabletop [8, 12], and sometimes operate purely in simulation [6, 13]. These settings limit the
capability of putting a moving robotic platform into real-world use. Additionally, the lack of prior
knowledge about an unseen environment and the dynamic factors leading to changes in the setup
further complicate the problem. However, addressing these two problems is crucial for developing
robots to become generalists and be practically applicable to a wider spectrum of real-world tasks.

To address the above challenges, we propose a novel two-stage framework enabling robots to explore
and build up semantic understanding of an unseen open environment, generate feasible efficient
plans by taking environment semantic context into consideration, overcoming dynamic changes of
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the environment, and understand human instructions and hints in natural language. At the 3D se-
mantic mapping stage, a robot explores the environment with heuristic algorithms [14, 15, 16] where
sequential observations from the robot goes into a simultaneously location and mapping (SLAM)
pipeline [17, 18, 19, 20] to reconstruct dense 3D structure of the environment for navigation, and
a semantics extraction and abstraction pipeline leveraging the open-vocabulary detection and zero-
shot abstract reasoning capabilities of LLMs [21] and VLMs [22, 23, 24] to build up semantic under-
standing of the environment captured in a 3-layer 3D semantic map (3DSMap) for open-vocabulary
navigation and mobile manipulation. At the semantics-aware open-vocabulary mobile manipulation
stage, the robot parses human instructions and hints given in natural language, and comes up with
corresponding semantically optimal region search plans with LLMs. When it finds the target object
to fetch using the open-vocabulary detection (OVD) capability of VLMs [22, 24], traditional search-
based and probabilistic path and motion planners [25, 26, 27, 28] can take over to pick up the target
object and return it to the user. Compared to traditional learning-based frameworks [12, 3, 6, 29]
that usually require intensive training, inspired by [11, 9, 8, 30], the approach we propose does
not requires training by taking the most advantages of pretrained foundation models to understand
and reason about the environment semantics and open-vocabulary region and instance concepts in
zero-shot.
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Figure 1: An illustration of our real-world experiment on OVMM with the JSR-1 robot platform we built. (a)
A sample run in our experiment. The robot receives a misleading instruction "fetch the controller from
the washing area" from the user. Obeying the instruction given by the user, it prioritizes the washing
area as the first region to search, where it fails to to find the target object g, = "controller". R =
entertainment area follows as the next most relevant semantic region, and JSR-1 successfully finds go,
picks up the correct corresponding instance ¢, and return to po. (b) The 5 regions in our experiment scene
setup with 20 different categories of objects scattered within them conforming commonsense in daily life.

We validate the effectiveness and robustness of the proposed framework on the mobile manipulation
robotic platform JSR-1 we built. Our experiment (Sec. 5) shows the capability of the approach we
proposed in taking in natural language human instructions for the zero-shot open-vocabulary mobile
manipulation task in dynamic environments, and replanning towards the next most possible location
in accord to the spatial semantic context from the 3D semantic map, if the target object does not
present at the location given by the prior knowledge from the user.

The main contributions of this work includes (i) a novel two-stage approach for a robot to explore
and build up semantic understanding of an unseen open environment a zero-shot and efficiently
tackle mobile manipulation tasks in the real world in open-vocabulary and dynamic environment



settings, (ii) a 3-layer structure of 3D semantic map representation to capture not only the structural
information but also the instance and abstract region semantics of the environment, (iii) a proposal-
approval work flow with generic-proposed VLMs to effectively reduce the false positive rate of
OVD models, and (iv) demonstrating the effectiveness of pretrained LLMs and VLMs on complex
real-world robotic tasks with dynamic factors and semantic commonsense of an environment being
considered, dispensing with the need of intensive training or fine-tuning neural network parameters.

2 Related Work

Pretraining foundation models for robotics. Pretraining foundation models [31, 32, 33], espe-
cially pretraining LLMs [34, 35, 21, 36, 37] and VLMs [24, 38, 39, 40, 41, 42, 43], have demon-
strated remarkable zero-shot capabilities in a wide range of tasks [44, 45, 46, 47, 48, 49]. Leveraging
such advantages in robotic and embodied applications has been under active research in recent years.
[50] and [51] combine multiple pretrained models as submodules for visual-language manipulation
and navigation. [11] directly fuses pretrained CLIP features [43, 39] for language conditioned nav-
igation. As for planning and decision making, [5, 52, 53] decompose high-level tasks with LLMs
into feasible plans consisting of pretrained or predefined executable actions. [30, 54, 55] solve long-
horizon robot planning problems with LLMs by incorporating classical planners. [3, 12, 6] adapt
the weights of pretraining vision-language models to train end-to-end models that directly map robot
observations to low-level control actions, while [8, 56] propose training-free approaches with pre-
training foundation models to achieve similar purpose. In this work, we utilize the zero-shot and
abstract reasoning capabilities of pretraining VLMs and LLMs to address semantic-aware OVMM
tasks, allowing real-world robots to perform complex tasks in unseen and dynamic environment set-
tings without specialized training or fine-tuning, which has significant potential to generalize across
various robotic platforms and tasks.

Scene reconstruction and semantic mapping. Reconstruction of environment facilitates robot
navigation and manipulation by providing structural context of its surroundings. Popular feature-
based SLAM methods such as ORB-SLAM [57, 19, 18, 17] and VINS [58, 59] support monocular
and visual-inertial RGB-D SLAM with loop closure for online applications, requiring less computa-
tion than traditional offline multi-view geometric dense 3D reconstruction approaches [60, 61, 60].
Recent advances in neural radian fields [62, 63] and Gaussian splatting [64] have been further de-
veloped to reconstruct continuous and dense 3D scenes and instance representations for robotic
applications in mapping and localization [65, 66, 67, 68], navigation [69], object pose estimation
[70] and manipulation [71, 72, 73, 74]. Moreover, [75, 9, 10] attach entity and spatial semantics
captured in 3D scene graph [76] or implicit representations [77], on top of structural reconstruction,
enabling spatial semantic awareness of robots in task planning, entity localization, navigation, etc.
In this work, we introduce 3DSMaps, a novel 3-layer structural representation to capture both spatial
structure and semantics in one, and demonstrate the effectiveness of it in our experiment.

Mobile manipulation and navigation in the open world requires open-vocabulary and strong
adaptive capabilities of a robot. Although recent progress on pretraining foundation models have
inspired more research focus, it remains an open problem [1]. [3, 12, 6, 7] propose to address this
problem in end-to-end pipelines. On the other hand, [30, 8, 56] introduce training-free approaches
with pretraining foundation models to tackle this challenge. Prior studies often assume either a static
environment [11, 6] or a non-mobile robot setting [8, 12], and sometimes operate purely in simula-
tion [6, 13]. We propose a novel framework in this study to holistically address the aforementioned
challenges of robotic mobile manipulation in the open world with open-vocabulary, dynamic and
unseen environment settings, demonstrating its potential to bring robots into real-world use.

3 Problem Settings and Formulation

We follow the open-vocabulary object navigation and mobile manipulation problem settings pro-
posed by [1, 2, 7] and consider a more interactive problem setting which can be found more com-



mon in the real world. A robot is ask by a human user to find and fetch an object for the user in
open-vocabulary settings. Aiming for generality and practicability of applying our framework to
real-world scenarios, we do not assume any prior knowledge and further consider dynamic factors
of the environment. The robot needs to explore and learn about the structural and semantic informa-
tion about the environment. And at online task execution stage, objects may not remain where they
were during exploration. The user may optionally provide suggestions to the robot about where the
object may be located, but such suggestions can be sometimes misleading as well in reality, which
is taken into consideration in our problem definition.

The goal of the above task can be formally described as a (g,, gr)-tuple. The robot receives a nat-
ural language instruction £ from the user about the goal, a typical example is "fetch something
[from somewhere]", where "something" suggests the target object g, to fetch and "somewhere"
is a hint from the user prior knowledge about the possible target region gr where g, may be located.
Note that the hint gr given by the user is optional and it can sometimes be misleading due to false
memory of the user or dynamic changes of the environment. In a successful run, the robot shall
reach the target region g, pick up the target object g, and return it to the user.

Real-world scenarios are rather complicated, to avoid ambiguity and alleviate excessive engineering,
there are two reasonable assumptions. (i) In any scene, there can be multiple types of objects and
sometimes multiple objects in the same type presenting in the scene or even the same location.
We may assume either the target object is the only one object with the same type presenting in
the scene, or if there are multiple objects with the same type as the target object, fetching any of
them is considered successful. (ii) View angle planning itself, especially in 3D settings, is an active
standalone research topic. To focus on the core problem to tackle, we may assume one or several
predefined view angles (camera poses) of the robot at each location in a scene. A robot can navigate
and pose its camera to these predefined angles in search for the target object.

4 Method

Prior knowledge about the environment and exact region to fetch the target object from are inacces-
sible to a robot. Hints from users are optional and not assumed to be reliable. Beyond the open-
vocabulary settings in mobile manipulation, it poses challenges on both building up structural and
semantic knowledge about the environment, and effectively and efficiently leverage such knowledge
to complete the aforementioned task. To that end, we propose a two-stage framework to holisti-
cally tackle the above problem in a training-free manner. At the 3D semantic mapping stage (Sec.
4.1), heuristic exploration and reconstruction from feature-based SLAM are followed by instance
semantics extraction and region semantics abstraction, taking the zero-shot and abstract reasoning
advantages of VLMs and LLMs for the robot to learn spatial structure and environment semantics
in a training-free manner. At the semantics-aware open-vocabulary mobile manipulation stage (Sec.
4.2), the robot prioritizes the regions to search with LLMs in accord to the user instruction and the
environment semantics, picks up the target object detected by open-vocabulary detection models
and returns it to the user.

4.1 3D Semantic Mapping in Unseen Environments

In a completely unseen environment with no prior knowledge, it is essential for a robot to become
aware of the environment structure and further build up semantic understanding of the environment.
In this section, we propose a 3-layer (structural layer, instance semantics layer and abstraction region
layer) structure of 3D semantic maps as illustrated in fig.2(a) to capture the both structure and
semantics of the environment.

Heuristic exploration and structural reconstruction. Off-the-shelf heuristic frontier exploration
algorithms [14, 15, 16, 78] are used for the robot to explore the environment. Sequential vision-
inertial sensing input from the RGB-D camera and the IMU of the robot is recorded, consisting
of RGB image frames {Z}sp} and depth frames {Z}} along with the IMU readings {I'}, each
of which is associated with a timestamp ¢. We adopt ORB feature based RGB-D-I simultaneous
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Figure 2: An overview of our proposed two-stage framework. (a) A 3-layer structured 3DSMap is built at
the 3D semantic mapping stage, by leveraging heuristic exploration and feature-based SLAM to build the
structural layer, using pre-trained VLMs and LLMs to extract instances from and propose region divisions for
an environment to build the instance semantic layer and the abstract region semantic layer, respectively. (b) At
the semantics-aware OVMM stage, a robot takes both region semantics from 3DSMap and user instructions as
context to prioritize regions to search with LLMs and fetch the target object for the user.

localization and mapping (SLAM) algorithms [17, 18, 19, 20] to fuse the RGB-D camera data and
the IMU readings, build 3D feature maps and determine key frames from loop-closure corrected
camera poses trajectory {T“™*}X_ with K being the total number of key frames.

The camera poses combined with the RGB and depth data associated to key frames in the sensor
data sequence generates a key frame trajectory as a sequence of (Zkg, Zh Tclgm) -tuples. Each depth
key frame ZF is by nature associated with a list of homogeneous 3D points P¥ = {pgfnf ) }; in the
camera coordinate frame by the intrinsic parameters of the camera [79]. Dense reconstruction of the
3D environment structure in point cloud representation can be achieved by re-projecting the dense
points from the depth frames onto the global 3D space P* = T<mk(PX )T and accumulating
them [19] for localization and navigation. We can further color the point cloud by the re-projection
and association of the 3D points to corresponding RGB image frames for visualization. The dense

reconstruction of the environment structure composes the structural layer of a 3DSMap.

Geometric and semantic extraction of 3D instances. To build semantic awareness of the envi-
ronment in a training-free manner inspired by [11] and [9], we adopt the Grounded SAM pipeline
[22] for 2D open-vocabulary detection and pixel wise segmentation. For each RGB image frame at

key frame k, it detects object instances {b(k Z)} _, with open-vocabulary detection models, such as
Grounding DINO [49] or Detic [40], and segments the detected instances with SAM [47] into 2D

pixel masks {m(’“) }i:r Text prompt inputs required by OVD models consisting of instance pro-
posals can be automatically generated by open-set image tagging models [80], captioning models
[81, 82] or generic-purposed VLMs [24] (Appx. A.1). Re-projection of the 3D points P* from depth
frames onto each of pixel mask m (%) further segments these 3D points into point-based geometric
representations {P(k %) }]\f of the instances presenting in the scene, each of which is decomposed
into its geometric center p%) = Mo Ypepni P and relative geometry P = Pk _ plkii),
Associated with object instance semantics b(*:%), especially the label of the instance, an instance ge-
ometric representation becomes a semantic geometric instance ¢(%?) = (b(’”), o) P(’”)) and is
then registered by its spatial coordinate 5(*-%) onto the instance semantics layer of a 3DSMap. The
geometry P(%%) of an instance from a key frame by the nature of field of view is a partial geometric
representation it, and multiple P (*9)’s from different key frames ks may point to the same physical
instance. Instance fusion [9] across key frames can effectively resolve this problem, however, it is
not strictly required by our proposed framework.

Region semantics abstraction. We consider robots operating in large open scenarios. In real
world, a scene in general consists of multiple functional areas with different semantic context.



Efficient utilization of such abstract semantics for planning is beneficial for a robot to overcome
dynamic factors in an environment, i.e. objects may not always persist where they were when
first observed. To this end, instances {¢(*)} extracted and registered on the instance semantic
layer are projected onto the 2D floor plane by simply removing the height dimension from their
geometric center 5**), forming a 2D bird-eye-view (BEV) instance semantics map. We place a
circular sliding window with radius r on the BEV map, starting from the top-left corner and swiping
through the entire map by certain step size Ad. At step (s, s, ), the area within the sliding window
{(z,9)|(x — s, Ad)? + (y — s, Ad)? < r?} selects a set of object instances falling inside, whose
labels after repeated terms removed effectively describe the objects presenting within this area. We
then leverage the zero-shot abstract reasoning capability of LLMs [21] to come up with a list of re-
gion proposals, depicting the abstract region semantics of the area (Appx. A.2). After a full sweep,
a zero-shot dense prediction of region semantics R(z, y) over the entire BEV space is therefore gen-
erated, constituting the abstract region layer of a 3DSMap, providing abstract semantic information
about different regions in an environment.

4.2 Semantics-aware Open-vocabulary Mobile Manipulation

With structural and semantic knowledge built up about the unseen environment and captured in
3DSMaps, a robot can efficiently leverage such knowledge to complete OVMM tasks and withstand
dynamic changes in the environment conforming semantic commonsense. Alg.1 depicts the overall
procedure of open-vocabulary mobile manipulation considering environment semantic context.

Algorithm 1 Semantics-aware open-vocabulary mobile manipulation

Require: natural language user instruction £, random sequence of regions in the scene Sg
Ensure: robot starts nearby the user at pg

(90, Gr) < LLMp(L| Tparsing) I> parse user instruction
Sy, < LLMy(Sr, go| Terioritization) > prioritize regions by semantic relevance with LLM
if gr #0 then

S}, < Reprioritize(SF, §r) B> assign highest priority to gr
end if

for R € S}, do
for p € Searchable(R) do

NavigateTo(p) > navigate to a searchable location p in region R

q < Find(g,/VLM,,) > attempt to find g, leveraging VLM

if ¢ # 0 then
if PickUp(gq) then > attempt to pick up instance ¢

NavigateTo(pg) > bring it back to the user

end if

end if

end for
end for

Open-vocabulary semantic prioritization for search regions. The robot receives a natural lan-
guage instruction £ from the user about the goal of the mobile manipulation task, asking the robot
the fetch a target object g,. The user may optionally provide hints about at which region gr the
target object may be. We parse £ and extract g, and §r from it, using pretrained LLMs [21] with
prompt template for instruction parsing Tparsing (Appx. A.3). The target object g, along with a list of
regions S presenting in the scene obtained from region semantics abstraction (Sec. 4.1) are input
into the pretrained LLMs with template 7pioritization tO prioritize the regions by semantic relevance
between the target object g, and each of the region in Si (Appx. A.4), which is followed by an
optional re-prioritization step to assign highest priority to the region gr suggested by the user in L.
The final outcome from the prioritization step (and re-prioritization step) is an ordered sequence of
regions ST, indicating the search priority of different regions for g,.

Prioritized navigation and in-region exploration. Following the prioritized list S}, of regions to
search, the robot attempts to reach these regions one after another and find the target object g,. Since



we consider mobile manipulation of grounded robots, though in general our framework is applica-
ble to any 3D spatial robots, to reduce computational complexity, the structural layers of 3DSMaps
is flattened into 2D cost maps [83, 84] for navigation. Heuristic reachability analysis [85, 86] is
adapted to pre-compute a list 2D searchable locations within a region with overlapped and infea-
sible locations filtered out. Global navigation trajectories are planned using a search-based global
planner [27, 25] and followed by the DWA local planner [87, 28], towards each of the searchable lo-
cations p € Searchable(R) within a region R then another following the prioritized list S3,. At each
searchable location p, the robot attempts to find and pick up the target object g,, whose details will
be further discussed below. At failure of finding g, at p, the robot will head to the next searchable
location and repeat the above procedure as illustrated in alg. 1, allowing the robot to complete the
task efficiently following the optimal semantic search path.

Open-vocabulary instance detection and manipulation. Reaching at a searchable location p in
region R, the robot will then adopt [25, 26] to conduct end-effector planning for a camera pose 7™
looking towards (e.g. downwards on) the operation area at p. Similar pipeline [22, 49, 47] from Sec.
4.1 is reused for OVD and pixel-wise segmentation, and the prompt instructing the OVD models
is simply tha target object g,. However, OVD models suffer from high false-positive rate [88],
significantly reducing the overall reliability. Therefore, we propose a proposal-approval work flow,
with an OVD model [22] coming up with detection proposal and another VLM model [24] double
checking the result to either approve or reject. The robot then plans the end-effector trajectory of its
gripper for grasping [26, 25], towards the semantic geometric instance ¢* = (b*, D, 13*) with the
highest confidence from the approved list of detected instances. We allows at most n. = 3 trials on
grasping at each location p. After success in picking up ¢*, the robot will return to the user.

S Experiment

We analyze the effectiveness and performance of our proposed method in the a large real-world
open space with the JSR-/ mobile manipulation robotic platform we built. Our experiment covers
135 independent episodes (eps.) in total with real robot for quantitative evaluation, which are split
into 5 experiment groups. Experiment details are presented and analyzed in below.

Experiment settings. Our robotic experiment is conducted in a large real-world indoor open space
covering an area of over 200 m?. Within it, we set up 5 regions as shown in fig.1(b) along with 20
different categories of objects placed within these regions conforming daily commonsense as shown
in tab.1. Our quantitative experiment with real robot platform consists of 135 independent episodes
in total, which are divided into 5 experiment groups (Appx.C.1). At the beginning of each run, the
robot starts from the same position py nearby the user and receives a natural language instruction.

Table 1: Division of Experiment Groups

Exp. Group # of Eps. | Description
NoHint 45 User instructions do not contain region hints
Random 30 Control group, where region search orders are randomized
Hinting 30 User instructions contain region hints
ErrantSemantics 15 Target objects are placed in semantic irrelevant regions
Misleading 15 User instructions contain misleading region hints

Robot platform. We have built a 10-DoF mobile manipulation semi-humanoid robotic platform
JSR-1, the robot appeared in fig.1(a), which consists of a 2-DoF wheeled chassis, a 6-DoF robotic
arm with a 1-DoF gripper, and an RGBD camera on nearby its end-effector. Besides, a 1-DoF waist
link assembles its chassis and arm, extending its operation range from O to 200cm in height.

Evaluation metrics. We introduce 5 metrics for quantitative evaluation. Success on first trial (SFT)
is the ratio of episodes where the first semantic proposal for search region contains the target object.
Success on navigation (SN) is the ratio of episodes where the robot has navigated to nearby the tar-
get object. Success on picking (SP) is the ratio of episodes where the robot has picked up the target



object successfully. Overall success rate (Succ.) is the ratio of episodes where the robot has success-
fully carried the target object to pg. Success weighted by path length SPL = % Zf\il S; W
measures the efficiency of reaching the goal in addition to the success rate [89]. '

Table 2: The overall performance of proposed method evaluated through real-world robot exper-
iment. We compare the result of each experiment groups with the control group (Random), and
report the SFT increased (SFT Incr.) and SPL increased (SPL Incr.) for each group respectively.

Group. Metrics SN SP Succ. SFT SPL SFT Incr.  SPL Incr.
Random (R.) 26/30 23/30  23/30 7/30 0.5332 - -
NoHint 34/45 33/45  33/45 33/45  0.6878 | 214.31%  31.46%
Hinting 25/30 21/30  21/30 | 30/30 0.6841 | 328.63%  30.75%
ErrantSemantics | 13/15 13/15 13/15 0/15 0.4942 | -100.00%  -5.54%
Misleading 13/15 10/15 10/15 0/15 0.4519 | -100.00% -13.63%
Total without R. | 80.95% 73.33% 73.3% | 60.00% 0.6254 | 157.18%  19.53%

Experiment Result Analysis. By the experiment result (tab.2), our proposed method demonstrates
a decent performance and robustness in complex real-world OVMM tasks, achieving an overall suc-
cess rate of 73.33% and a successful navigation rate of 80.95%, under various situations, including
objects being randomly placed in semantic irrelevant regions and user giving misleading instruc-
tions. Compared to the control group (Random), it has better overall performance on SFT and SPL
by 157.18% and 19.53% respectively. As for normal situations without misplacement of objects or
misleading user instructions, our approach demonstrates a significant performance advantage in the
NoHint and Hinting groups, with better SFT by 214.31% and 328.63%, and SPL by 31.46% and
30.75%. The result shows that our proposed method is able to efficiently incorporate spatial region
semantics and user hints for semantic-aware OVMM tasks, and it can robustly recover from failure
and complete the tasks even being exposed to dynamic factors and misleading instructions.

Table 3: Comparison of the experiment results between NoHint and Hinting groups.
Exp. Group | SFT (%) SN (%) SP (%) Succ. (%) SPL (0.0-1.0)
NoHint 73.33 75.56 73.33 73.33 0.6878
Hinting 100.00 83.33 70.00 70.00 0.6841

Furthermore, as shown in tab.3, the Hinting group achieves 100.00% SFT for its leverage of region
hints in the instruction from the user, indicating the effectiveness of our framework to incorporate
prior knowledge and suggestions from humans. We also notice from tab.2 that in Misleading group
SPL is below average and less than the control group 13.63%. It indicates that our framework
is sensitive to human instruction, and misleading or wrong suggests can lead to lower efficiency.
However, it keeps an SN = 13/15 = 86.67% above the average and a reasonable overall success
rate at 66.67%, showing the failure recovering capability of our proposed framework.

6 Conclusion and Future Work

In this work, we propose a novel framework that tackles the problem of Open-Vocabulary Mobile
Manipulation, which leverages the zero-shot detection and grounded recognition capabilities of pre-
training visual-language models (VLMs) combined with dense 3D entity reconstruction to build
3D semantic maps. Additionally, we utilize large language models (LLMs) for spatial region ab-
straction and online planning, incorporating human instructions and spatial semantic context. We
have built a 10-DoF mobile manipulation robotic platform JSR-1 and conducted real-world exper-
iments to demonstrate the effectiveness of our proposed training-free method. In future work, we
will focus on incorporating autonomous exploration techniques to extend our system’s capabilities
to unknown environments. Furthermore, exploring the use of multiple agents or robots for collabo-
rative exploration and scanning of environments will improve efficiency and coverage in unknown
or large areas.
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A Experiment Details of LLMs and VLMs on Zero-shot Tasks

A.1 VLMs for Instance Proposals for OVD Prompts
A.1.1 InternVL 1.5

Below is an example of using InternVL 1.5 [24] for the zero-shot instance proposals for OVD
prompts.

What objects are in the image? Return in JSON format {"objects": object_name, ...

{"objects": ["headphones", "controller", "phone", "rubber duck", "charger",
"speaker", "note", "plug"] }

A.2 LLMs for Zero-shot Region Abstraction Proposal
A2.1 GPT-4o

Below is an example of using GPT-40 [21] for the zero-shot region abstraction proposal task.

SYSTEM: The user will give you a list of objects inside a region and a list of region candi-
dates in JSON format {"objects": [object_1, object_2, ...], "region_candidates":
[region_candidate_1, region_candidate_2, ...]} , please order these regions in decreas-
ing order of likelihood and return just in JSON format {"region_proposals": [region_1,
region_2, ...1} , do not reply markdown format.

USER: { "objects": [ "beverage", "bottle", "can", "soda", "table", "juice",
"mustard", "ketchup" ], "region_candidates": [ "living room", "classroom",
"coffee shop", "kitchen", "hallway" ] }

ASSISTANT: {’region_proposals’: [’kitchen’, ’coffee shop’, ’living room’,
’classroom’, ’hallway’]}

A.2.2 InternVL 1.5

Below is an example of using InternVL 1.5 [24] for the zero-shot region abstraction proposal task.
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| will give you a list of objects inside a region, and a list of region candidates in JSON format,
please order these regions in decreasing order of likelihood and return just in JSON format only:
{ "region_proposals": [ region_1, region_ 2, ... 1 1},

with no verbose information or justification. Now, let’s begin.

{ "objects": [ "beverage", "bottle", "can", "soda", "table", "juice",
"mustard", "ketchup" ], "region_candidates": [ "living room", "classroom",
"coffee shop", "kitchen", "hallway" ] }

{ "region_proposals": [ "coffee shop", "kitchen", "classroom", "living room",
"hallway" ] }

A23 LLaMA3

Below is an example of using LLaMA 3 [34] for the zero-shot region abstraction proposal task.

I will give you a list of objects inside a region, and a list of region candidates in JSON format,
please order these regions in decreasing order of likelihood and return just in JSON format only:
{ "region_proposals": [ region_1, region_2, ... 1 1},

with no verbose information or justification. Now, let’s begin.

{ "objects": [ "beverage", "bottle", "can", "soda", "table", "juice",
"mustard", "ketchup" ], "region_candidates": [ "living room", "classroom",
"coffee shop", "kitchen", "hallway" ] }

{ "region_proposals": [ "kitchen", "coffee shop", "living room", "hallway",
"classroom" ] }

A.3 LLMs for User Natural Language Instruction Parsing
A3.1 GPT-4o

Below is an example of using GPT-40 [21] to parse user instruction in natural language, and convert
into structural instruction.

SYSTEM: The user will give you an instruction in natural language about something ("target ob-
ject") he/she wants to find, and the user may or may not give further guess about what region the
target object may be located. Please turn the instruction into JSON format {"target_object":
target_object, "region": region} ,where region shallbesetas null ifthe user does
not give further guess about region, do not reply markdown format.

USER: Fetch the spray cleaner from the entertainment area.

ASSISTANT: {’target_object’: ’spray cleaner’, ’region’: ’entertainment
area’}

USER: Fetch the milk powder.

ASSISTANT: {’target_object’: ’milk powder’, ’region’: None}

A.4 LLMs for Search Regions Prioritization
A4.1 GPT-40

Below is an example of using GPT-40 [21] to prioritize regions to search for the target object. In
this part, we only consider the mapping from target object to a prioritized list of regions to search,
without considering the region suggestion from user instruction.
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SYSTEM: The user will give you a list of region names in JSON format {"regions":
[region_1, region_2, ...], "target_object": object_name} ,and the name of a tar-
get object he/she wants to find, please proposal a list containing the names of these regions
in descending order of priority to search, and return in JSON format {"ordered_regions":
[ordered_region_1, ordered_region_2, ...]} ,do notreply markdown format.

USER: {’regions’:
Joffice table’], ’target_object’:

[’entertainment area’, ’washing area’, ’kitchen’, ’bar’,
’controller’ }

ASSISTANT: {’ordered_regions’: [’entertainment area’, ’bar’, ’office table’,
’kitchen’, ’washing area’]}
B List of Symbols
Symbol Description
L User instruction in natural language
o Target object to fetch
IR Target region where the target object is located
TrGB Image data from RGB-D camera
Ip Depth data from RGB-D camera
Team Homogeneous transformation indicating the global pose of the RGB-D camera
t Time stamp of a timed sequence, 0 <t < T
T Maximum time stamp of a timed sequence
k Key frame index, k € {1,2,--- , K}
K Total number of key frames
pgfnf ) The j-th homogeneous 3D point in camera frame from the k-th key frame
Pt Matrix containing all 3D points in camera frame as columns from the k-th key frame
P* Matrix containing all 3D points in global frame as columns from the k-th key frame
bk-0) The i-th object instance detected at the k-th key frame with label and bounding box
mk-) Pixel mask for the i-th object instance detected at the k-th key frame
Ny, Total number of object instances detected at the k-th key frame
Pk Matrix containing all 3D points associated with the i-th instance at the k-th key frame
ket Geometric center of the ¢-th instance at the k-th key frame
Pk Relative geometry of the i-th instance at the k-th key frame
g+ The ¢-th semantic geometric instance extracted at the k-th key frame
r Radius of the circular sliding window for region semantics abstraction
Ad Step size distance by which the sliding window moves for region semantics abstraction
Sz Sliding window swiping step along the z-axis
Sy Sliding window swiping step along the y-axis
R(z,y) Region semantics suggesting a label of the region containing coordinate (x, y)
Searchable(R) A list of searchable locations in region R
q* Semantic geometric instance with the highest confidence to pick up
Ne Maximum number of trails for grasping at a location
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C Experiment Details

C.1 Experiment Setup

Table 4: Default object placement in different regions

Region Default Objects
Entertainment Area | controller, toy, charger, snacks
Washing Area sponge, cloth, cup, spray cleaner
Cooking Area ketchup, milk powder
Bar bottled water, cup, milk, soda
Office Table marker, stapler, pen, tape, mouse, bottle glue

Table 5: Division of Experiment Groups

Exp. Group # of Eps. | Description
NoHint 45 User instructions do not contain region hints
Random 30 Control group, where region search orders are randomized
Hinting 30 User instructions contain region hints
ErrantSemantics 15 Target objects are placed in semantic irrelevant regions
Misleading 15 User instructions contain misleading region hints

C.2 Experiment Result

Table 6: Detailed result of our robot experiment

Exp. Group SFT SN SP Succ. SPL
NoHint 33/45(73.33%)  34/45 (75.56%) 33/45(73.33%) 33/45(73.33%) 0.6878
Random 7/30 (23.34%)  26/30 (86.67%) 23/30 (76.67%) 23/30 (76.67%) 0.5332
Hinting 30/30 (100.00%) 25/30 (83.33%) 21/30 (70.00%) 21/30 (70.00%) 0.6841

ErrantSemantics 0/15 (0.00%) 13/15 (86.67%) 13/15 (86.67%) 13/15 (86.67%) 0.4942

Misleading 0/15 (0.00%) 13/15 (86.67%) 10/15 (66.67%) 10/15 (66.67%) 0.4519
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